Indian Statistical Institute Semestral Examination Differential Topology-MMath II

Answer all questions.

Max Marks: 60

Time: 3 hours

- (1) (a) Show that the interval [-1,1] is not diffeomorphic to $X = \{(x,y) \mid (0 \le x \le 1 \text{ and } y = 0) \text{ or } (x=1 \text{ and } 0 \le y \le 1)\}.$
 - (b) Consider the map $f: S^2 \longrightarrow S^1 \times S^1$ defined by

$$f(x, y, t) = ((x, \sqrt{y^2 + t^2}), e^{2\pi i t}).$$

Does f have any critical point?.

- (c) Does there exist a submersion $q: S^1 \times S^1 \longrightarrow \mathbb{RP}^2$?
- (d) Show that the vector field $\partial/\partial x$ on $\mathbb{R}^2 0$ is not complete.
- (e) Show that the tangent bundle TS^1 of S^1 is diffeomorphic to $S^1 \times \mathbb{R}$. [4 $\times 5 = 20$]
- (2) (a) Show that the real projective space \mathbb{RP}^n is a smooth manifold. Give a complete proof. [8]
 - (b) Show that S^n is orientable for all $n \ge 1$ by exhibiting a nowhere zero n-form. Show that \mathbb{RP}^n is orientable if n is odd. [8]
 - (c) Let $f: M \longrightarrow N$ be a smooth map. Smooth vector fields X on M and Y on N are said to be f-related if $df \circ X = Y \circ f$. Suppose that X, X_1 are smooth vector fields on M and Y, Y_1 smooth vector fields on N. (i) If X is f-related to Y and X_1 is f-related to Y_1 show that $[X, X_1]$ is f-related to $[Y, Y_1]$. (ii) Suppose that df(X(p)) = df(X(q)) whenever f(p) = f(q). Is there a smooth vector field Z on N that is f-related to X?
- (3) (a) State the stability theorem. Show by examples that the properties (i) being an embedding, (ii) being transverse to a given submanifold are not stable properties of maps defined on non-compact domains. [2+2+2=6]
 - (b) Compute $H^{i}_{dR}(S^{1}), i \geq 0.$ [10]